Stability of variational eigenvalues for the fractional $p-$Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of variational eigenvalues for the fractional p–Laplacian

By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.

متن کامل

Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian

We prove the existence of nondecreasing sequences of positive eigenvalues of the homogeneous degenerate quasilinear eigenvalue problem − div(a(x)|∇u|p−2∇u) = λb(x)|u|p−2u, λ > 0 with Dirichlet boundary condition on a bounded domain Ω. The diffusion coefficient a(x) is a function in Lloc(Ω) and b(x) is a nontrivial function in L(Ω) (r depending on a, p and N) and may change sign. We use Ljustern...

متن کامل

LOWER BOUNDS FOR EIGENVALUES OF THE ONE-DIMENSIONAL p-LAPLACIAN

We also prove that the lower bound is sharp. Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have received considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic behavior of eigenvalues was obtained in [6, 7]. Lyapunov inequalities have proved to be useful tools in the study of qualitative nature of solutions of ordinary linear diffe...

متن کامل

EIGENVALUES OF THE p-LAPLACIAN AND DISCONJUGACY CRITERIA

In this work we derive oscillation and nonoscillation criteria for the one dimensional p-laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willet, and the proof is based on a Picone type identity.

متن کامل

THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2015

ISSN: 1078-0947

DOI: 10.3934/dcds.2016.36.1813